
- .--- --.-- --- - . --- -- - -  - . ---- ~~~
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where A (x) is the unique polynomial of degree at most q which satisfies

L~A(—m) = 0 , j = O(l)k_m_l*

A(-j ) = [0  = O*(l)0
j  i ( i )m— l

A ’( -j )  5 j  = 0

j = l( l ) m— 1

Briefly, we have shown that the numerical solution is advanced one

step by setting

t—t

(3. 1) p (t) = p (t) +n n-i h ~

- 
-
~~ 

where 6 is chosen so that Pn (t )  satisfies the di fferential  equation and

A(x) is characteristic of the muitistep formula.

The polynomial formulation of the k—th and (k+l)—st order

Adams—Moulton formulas was discovered by Descloux [1963]. Schemes based

on general choices of A(x) are discussed by Skeel [1973] and by Wallace

and Gupta [1973], who give an interesting interpretation of polynomial

schemes in terms of polynomial predictive filters. They derive new

formulas for stiff problems by choosing It(x) to be a monic polynomial

which best approximates zero for x < 0. Different types of

approximations yield different formulas. Still more formulas are

presented in Gupta and Wallace [1975] and Gupta [1976]. The 1975 paper

uses the term modifier polynomial for A(x). (In the 1973 paper this

term is applied to A(x/h).)

A very simple identification of these polynomial schemes with

Nordsieck formulas becomes apparent if the polynomials are represented

by vectors of scaled derivatives. Let a = 
~~n

(t
n
)
~ 

hp’(t ),...,

and 2~ = [A (O), A’(O),..., ~
(~)(0)/ q ,]T• Then from

(3.1) we have

- 
~~~~~~~~~~~~ ..~

- - - ----- .-- - ~~~~- “ _ _ _ _ _ _ _ _ _
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p~
1
~~( t )  = P~~~

(t n ) + h 1A~
1
~~(0)6

from which it easily fo] lows that

a = Pa + 2 . 6— n — n—i — n

— i T  Twith 6 chosen so that h e a = f(t , e a ) .n —1--n n -0—n

For the k—th order backward differentiation formula

k

~ a y 
— 

hy ’
=0 m i  n

the modifier polynomial A(x) must satisfy

A (-j ) = 0 , j = l ( l )k- l

-
~~~ MO) = 1, A’(O) = a0

whence

k— i
A(—k) = {A’ (O) — 

~~

1=0 -~

= 0 .

Therefore

x+kA ( x) = 
~ k

k 
~ k-fl j

= — [.  ]xk! 3+13=0

where the (square) brackets denote Stirling numbers of the first kind

(see, for example Knuth [1968 , p. 66]). The fact that A(x) vanishes

for x = —1 , —2 ,..., —k means that the values y 1, 
~
‘n—2’’~~~’ ~~~k 

are

“remembered” after advancing from t to t
n-i n

For the (k+l)—st order Adams—Moulton formula

- ~~~~~~ -- - -  - ——-—~~~~~~~~~~~ ~~-. --
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~
‘n~~n-l 

= h 
j~o ~~~~~

the modifier polynomial of the (k+2)—value form must sat isfy

A ’ ( —j ) = 0 , j  = 2( l)k— i

A (O) = , A’(O) = 1

A(—i) = A’(—i ) = 0

whence
- 

k—i
A’(—k) = {A(0) — A(—1) — E 

~~
.

j =0 J

= 0 .

Therefore

x+kA (x) = 
~ k

and so

A(x) 1 (~~~)d y

-i x
= - f  (Y4k)~~ + f  (Y~~)~~

O 0

In terms of Stirling numbers

~ (
Y~~)~~ = 

1 [
k+l

] i

These are the formulas used by the nonstiff options of the codes DIFSUB

of Gear [1971], GEAR Rev. 3 of Hindmarsh [1974], and EPISODE of Byrne

and Hindmarsh [1975] when the stepsize does not vary.

The (k+1)—st order Adams—Moulton formula could also be written

as a (k+l)—value Nordsieck formula. The modifier polynomial for such a

formula can be determined by applying the theorem that follows.

1) 
- . ~~~--- -_ _--- - - -  —-- - - - -
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THEOREM 3.1. Let A(x) be the modifier polynomial of the (q+l)-

va lue form of a linear k—step fo iinula of order at leas t q where

q > k+l and p ( F ~) and o(~) have no common factors. Then A(x) :— M x) - A(x-i)

is the modifier pol ynomial for  the q—value fo rm of the mul tia tep

formula.

Proof. For m < k

rn-i
Lk m A(_ m) = LkA(_ m) - E {-c*1A(-i) +

1=0

= 0 ,

and fo r m = k+l

k
- ~~~

.- A(O) = —a A ’ (0) + _L 
~ {_cz~A(_i) + 8~A’ (— i) }a0 0 1=1

=

Hence

L~ A (—m) = 0 , I = O( l )k— m

A (0) = A’(O) = a
0

A (—j) = A ’ ( — j ) = 0 , j  = i(l)m— l

from which the theorem follows.D

Therefore the (k+l)—value form of the (k+i)—st order Adams—

Moulton formula has 

x—l
A(x) = I (Y~~ )dy — f

—l — 1

0 x
= f (~~

45dy + f {(Y~~) — (~
‘
~~~~~)}dy

— l ~ 0

- - f (~~‘5dy + f (~~‘~~~)dy
0 0

5- 

- - -~~~~~ -- - -~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _
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These are the original formulas of Nordsieck.

Let us consider now the case m=0 . The values 6 , y , and y’
n n n

are determined as before. However , for j = 0(1)k—l

L~d ( t ) = a
k I

(y
fl

y 
~~ 

+ h~~~ 1
(y~_Y~~ 0

)

= (_a
k I~ O + ~k_~

a
O

)6
fl

Therefore the solution is advanced one step as given by (3.1) with A (x)

determined by -

L~A(0) a
kI ~0 

+ Bk_IaO, j = 0(i)k— 1.

However , p (t) does not necessarily interpolate y and y’ nor does

it generally satisf y the d i f f e rential equation at t = t~ . Therefore ,

in the scaled der ivative f orm this scheme is a generaliz ed Nordsieck

fo rmula in the sense that ~S is determined by a condition other than then
satisfaction of the differential equation at t = t . Such formulas are

n

potentially useful because of their minimum storage property. Nordsieck

[1962 , p. 27] considers the possibility of having 2.o = but 2.
i # a0

so that p (t) interpolates y but not y’; however, the results of his

experiments were not promising. Also, Wallace and Gupta [1973] mention

that “Other choices of 6n are rationally possible, and we hope to explore

some other choices later.” Finally, it is worth noting that Theorem 3.1

extends to the case q = k .  

~~~~~~~ - -
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4. The Correspondence between Multistep and Nordsieck Formulas. In the

preceding section it was shown how to construct the modifier polynomial

A (x )  o f a Nordsieck formula from the polynomials p (f ) and a(~ ) of a linear

muit is tep formula p rovided that p(
~
) and a(~ ) have no common divisors.

In this section we show how to obtain p (~ ) and a (~ ) from A (x) , and we

establish a one—to—one correspondence between (1) the class of au (q+ 1)—

value ]inear Nordsieck formulas and (ii) the class of all linear multistep

formulas of formal order at least q and of stepnutnber at most q (including

those for which p(f) and a(~) have common factors).

For each linear Nordsieck formula we define a correepondi ng

linear multistep formula (~ , ~) by

~~~) = det(~I-P)e~~~1-P)~~~ ,

(4.1)

det(~I—P)e~(~I—PY~~ .

Applying Cramer’s rule to e~ (EI— P)~~ 2. for j  = 1 and j  0 yields

~~l £o —l ... —l

0 £
i —2 ... —q

~~~(~~~
) det 0 £2 ~~~

0

and 

-- -- --
~~~~~~~~

- -
~~~~~~~~~

--
~~~ --~~~~~~~~~~~~~~~~~ 

-
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—1 — l . . .  — i~~

f~— l —2 ... —2

= det 2.
2 

0 ~~~~~~~ 
— (

~~~)

0 
-

Hence ä(~ ) is a polynomial of degree q or less , and ~ (~ ) is of degree q

since ~ 0. Let 
-

q 
—
. q

p(~~) =: ~ and a(~~) =: 
~

i=0 1=0

It mi ght happen that  a
q = 

~q 
= 0 , and hence express

(4 .2)  ~~~) =: ~
m-i~(~) and ~~~)

where a~ + > 0 and rn-i = q-k.

The following theorem shows that the p(~
). and a(~) corresponding

to A(x) can be used to reconstruct A(x) by the process of §3 if it is

applicable.

THEOREM 4.1. With p(~ ) and a(~) derived from A(x) by (4.1) and

(4.2) we have

L~ A( —m ) = 0 , j = 0(l)k— i

= A(0) — 

~o 
‘ 

= At (0) = a0 ,

A(—j ) = A ’ ( — j ) 0 , j  = i(l)m—l

A (—m) = (_ l)~ 8~ , A’(—m) = (_i)~a~

Proof. The relations = and = a0 follow from the

expressions for p(f) and a ( ~ ) as determinants. From (4.1) we have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= (~~~l)~~~
l E e~(

1P 1
~~ 2.

i=O
_ -.

= (~~~1) q+l E A’(-j -l)~
3

1=0

Clearly , A’(—j) = 0 , ~ 
= l ( l ) m— l , a

k 
= (~ l) ’1A’ (—m) , and

p( ~ ) = (~~~l)~~~
1 

E A ’( -j -m)~
3

1=0

Similarly A (—j ) = 0 , 1 = l ( 1) m— 1, 
~k 

= (_ l)~~~(_~ ) ,  and

-~~ 
~~~

. 
~~~(~~~ ) =~~(~~1) q~ 1 E

j=O

From these expressions for  p(~~) and a(~ ) we get

— 

-p( ~ ) A(-j -m)~
1 
+ a(~) A ’ ( - j -m)~~

1 
= 0

Equating coefficients of the powers of ~ completes the proof .0

The next theorem shows that the muitistep formula (~ , ~)

corresponding to A(x) is of order at least q, and therefore it can be used

to reconstruct A (x) by the process of §3 if p(~) and a ( ~ ) have no common

factors.

THEOREM 4 .2 .  The linear multistep formula corresponding to

a (q+ l) -value linear Nordaieck formula has formal order at least q.

Moreover, it is of order at least q+1 i f  and only i f  bT9~ = 0 where the

components of b are the Bernoulli numbers defined by

~ b
F

eZ_ l j 0  ~~

~ 

~~ - -.- .-~~~~~~-~~~-- -.
~~~~~~~~~~~~ - ~~~- - - - -  -
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/ :-~ - ~~. A ccov&f ing to the de f i n i ~ Ion of formal  order and

equation (-. .1) it must he shown that

= l o g ( 1+ z ) z  1e~~( ( 1+ z ) 1 — P ) ~~~~ + O(z~~
’)

and so it is enoto-h to show tha t

e~~(l-~~
1 F) 1 

= iog(l+z)e~ (I—z ~~F) ’ + 0(z)

where F := P—I . Because ~~~~ = 0, it is not d i f f i c ult to verif y that

log(1+z)(l—z~~ F) 1 
= log(I+F)(I—z

1F) 1 
+ 0(z)

- - - T T
and so it suf ti to show that c0 iog(I-f-F) = 

~~ 
This holds because

I+F P = exp(Q) where

~O 1 
-

0 2

- o
To prove the second assertion , retrace the first two steps of the proof

to get the following condition for formal order of at least q+l :

+ . . . + ~(-F)~~}~ = 0

The matrix in braces is

= ~~~~~~~-~~--—— = E —i- Q3
F exp(Q)—] 

1=0 1!

from which the second part of the theorem follows.D

f- f’r~- :r - - 1. The natrices P, F, and Q obviously represent the

linear operator:-~ shift , f orward d if f erence , and deriva tive , respectively .

for po lynomi als of dogrec q or less. l)efining B = I — P ’ to be the m a t r i x

H - - - . .- -

— - ~~~~_L~~ — - ——
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tepresenting the backward difference operator V it is not difficult to

show that the condition bTi = 0 is equivalent to

q
—v -

j  =0

as well as

q— 1
A (— i )  — 

~~ y~÷1V1A’ (— l) = 0
j =0 -~

where the 
~~~~ are the coefficients for the backward difference form

of the Adams—Moulton formulas. These conditions on the polynomial A (x)

arise in another situation in Henrici [1962, p. 342].

Remark 2. The condition bTi is obtained by Wallace and

Gupta [1973) although the coefficients b . are not identified as the

Be~nou11i numbers. Instead a recursive definition is given for the

b
1
, which should read

I

0
_ 

‘ i i
_

i=O

Remark 3. It is shown by Gear [1966] that a stable linear

Nordsie ck method is convergent of order q in all components of a , and

it is shown by Skeel and Jackson [1977] that it is convergent of

Torder q+l in all components if and only if b 2. = 0.

It has thus been shown that to each linear Nordsieck formula,

which is uniquely specified in terms of 2., there corresponds a linear

multistep formula of formal order at least q and of stepnumber at most q.

We now establish a correspondence in the opposite direction. We have

from (4.1) that

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -~~~ ~~~ -- ~~~~- -—-~~~~~~~~ 
- 
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~ ( l+z)  =

= ~~~ E z
- i=0 —

where F := P— i is the matrix of the forward d i f f e r ence  operator.  Equa t ing

coefficients of powers of z gives

31) (l)  
=

and hence A (x )  is determined from it s  corresponding ~ (~ ) by Newton ’s

forward d i f f e r e n c e  fo rmula

q
— (4.3)  A (x) = E . 

‘ / ( X
)

j =O 
q—j

Since the linear mul t i s t ep  formula is uniquely specified by ~~~~ the

one—to—one correspondence is establ ished.  The inverse t ransformat ion

is convenien t ly expressed as

q
= E ~~~~~~~~~~~~ ~

j=0

and

q—l
~~~(~~~ ) 

= E
j =0

Note from (4 .3 )  that  the popular normal iza t ion  o(i)  = 1 corresponds to

= llq!.q

Remark . Theorem 3.1 can be generalized to any modif ier

polynomial Mx) for which m > 2. Express ~ (~ ) =: ~&(~). Then

= e~~~ (1) + ~~~~~~~~~~ ,

f rom which i t  can be shown tha t
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A ( x ) 
q-l 

1) 
(
X+1

)

j=0

and

q-1 J ) (~ \A (x) := A (x) — A ( x — l )  = E ~~~~~ (

~=o j .  q j

Clearly ~(x) is the  modifier polynomial for the q—value formula.

L.~~~~
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5. Equivalence of Linear Nordsieck Formulas to Linear Multistep Formulas.

Recall that a linear Nordsieck formula determines successive values by

the system of difference equations

(5.1) a =Pa +2.6
-n -n—l — n

where 6 is chosen so that y ’ = f ( t  , y ). We do not consider the moren n n n

general formula a = Aa + £6 because formulas with A 
~ P are of—n —n—i — n

dubious value, and in any case, most of the results for A = P generalize

if minor restrictions are imposed on A.

For theoretical purposes a rewriting of (5.1) is often useful.

Preinultiplying (5.1) by yields 6 = 2.
1
1
(hf —e~Pa 1). Let £ :=

and S : (I—2.e~)P, and we get

(5.2) a = Sa + h~f—n =n—l — n

where f is chosen so that f = f(t , e
T
sa + h2. f ). Expressions forn n n —l —n—l O n

~ (f~) and ~ (~ ) in terms of S are given by the following theorem, whose

proof uses an idea from Osborne [1966, equation (4.3)].

THEOREM 5.1. The polynomials ~ (~ ) and ~ (F ~) defined by (4.1)

satisfy

= det (~
I_S)4(fI_S)~~L

and

~ (~ ) = det(~I—S)e~(~I—S)

Proof. We have

~I—S = ~I—P +

= (~I—P)(I + (~I—P)~~24P) ,
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and so

det (~ I—S) (~ I— S)~~~ = det(~ I— P) det (I+(~I—P)~~ 2e~P)

. (I+ (~~I— P) 1
~ 4P) (~~I— P) 12~

This can be simp l if ied by means of the ident i ty

det(l+xyT) (l+xy T ) l
x = x

which follows from Cramer ’s rule. Thus we get

det(~~I — S ) • ( E I — S ) ~~~2. = det(~ I—P ) (I~I—P ) 12.

from which the lemma immediately follows.D

Note that e~s = 0T ; and so ~(~ ) = det(~I— S)ç
12.
1
, which

— 
- 

gives the charac te r i s t i c  pol ynomial of S as

det(E~I—S) = ç
~~mp(~)

Thus the s t r ic t  root condition is satisfied by the linear Nordsieck formula

(cf . Skeel and Jackson [19771) if and onl y if it is satisfied by the

corresponding linear multistep formula .

The theorem that follows shows that in the case of all Nordsieck

formulas the zero—th and first components of the vectors a~ sa t i s fy  the

difference equation of the corresponding linear multistep formula (p, a).

Hence all the limitations on the accuracy of multiscep formulas (Dahlquist

[1956], [1963J)apply also to Nordsieck formulas.

THEOREM 5.2. The values y ,  y ’, n = 0(l)N, computed from (5.1),

satisfy the linear multistep f o rmula

p( E)y f l k  = ho(E)y ’
k

defined by (4.1) and (4 .2)  for n = k( l )N .

Proof. From (5.2) we have
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k-l
S~~~ a a . — 

~~ S
1
~~ 2~hf— n-k —n -j  . . - n-i

1=3

and

k k-i k-i
p ( S ) a  = 

~~ a .a . — Z a . E s~ 3 2.hf
-n—k j=O j — n — j  

j=0  ~ i=j — n— i

Premuitiplying by and rearr anging gives

k k-i i
E a .y . = ~ e

T 
E a .S

i_3 }~ hf + eTp ( S)a
j=0 ~ ~~~ 1=0 =0 j=0 ~ - n— i =0 -n—k

It needs to be shown first that

- 
~~~

- (5.3) ~~~) = E e~~( 
~

i=O~~ j=0 ~ -

We have that

=

=

q . q—j
= ~ a .E~

3 E ~ e~ S 2 . ,
j=O 1=0 -

which leads to (5 .3 ) .  It remains to be shown that

Te0p(S) = 

~k~1

Because S satisfies its character istic polynomial , e~ p( S)Sm 
= 0T 

Also ,

because S is of rank q, it has only one linearly independent lef t  eigenvector

associated with the eigenvalue 0; and so e~ p(S)Sm i  is a multiple of 4.
This imp lies e~ p (S)S

m_l (I_9~4) = 0 , and so by (5.3)

T rn—i Te0p(S) S = 8
k+m— i~l

- 

~
—-

~~
-
~~

I-
~ -i 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If m > 1, then e~ p ( S)S m l 
= 0T and this argument can be repeated until

the assertion is established.D

Remark 1. We have y~ = f except possibly for a = 0.

Remark 2. This theorem improves the result of Descioux [1963]

and Osborne [19661 in two respects: f i r s t , p (~~) and a ( ~ ) are given in

closed form , and second , the result is shown for n > k rather than n > q.

The next theorem proves that Nordsieck and multistep methods

are equivalent in the sense of Gear , for  it is shown that there is a

nonsingular matrix that relates the scaled derivative approximations a

to certain linear combinations of computed y and y ’ values. As a

consequence, in practically all cases linear Nordsieck methods cannot

be r ega rded as general izat ions of linear mul t i s tep  fo rmulas (cf .  Gear

[l97ia , pp. 102 , 136]).

THEOREM 5.3. Assume the pol ynomials p (F ~) and a (F ~) corresponding

to a given (q+i)-va lue Nordcieck formula have no common factors. Then

there ex-ists a unique nonsingu lar (q+ 1)x(q+l) matrix T depending only on

2, such that

— la T yn n

for n = k_l*(1)N where

0 k_m_ l* , , Ty := [s ,. bn m  ~“n— 0~ ’ •
~ 

31n—m+l’ 
hy , . . . ,  hy~~~~ 1] .

Proof. By Theorem 4 .2  the formula (p, a) is of order at least

q, and hence by the corollary to Theorem 2.1 there exists a unique

nonsinguiar matrix T such that

_ _ _
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P ( t n
) 

1 
L~p(t )

hp ’( t ) 
= T 1 L~ P ( t )

~~~~~~~~~~ (t~ )/ q ! hp ’ (t~~~~~,.1
)

for any polynomial of degree q or less. Define values Yj 
and for

j = l*_k( i)_ l  such that

y0
Ta
0 .

The process of §3 may be app lied to construct a (q+i)— vaiue linear

‘
. -

, Nordsieck formula which would compute vector s T 1
Yn~ 

n = i ( l)N.  The

results of §4 imply that this formula would be identical to the given

Nordsieck formula , and hence a = T 1y .  The uniqueness of T follows

from the fact  that the method is exact for all polynomials of degree

at most q if the starting values are exact.D

Remark. For implicit formulas Wallace and Gupta [1973] give

an informal argument suggesting that the quantities 
~n—q ’ and

j = l ( l ) q —l , can be expressed as linear comb inations of y
1

, 
~n—j ’

j  = l( i )q .  Their conjecture is correct as long as ~m 1~~(~ ) and

have no common factors. In that case it is an immediate

consequence that the components of a 1 are linear comb ina tions of

37n—j ’ ~n—j ’ ~ = l ( l )q.

Theorem 5.3 does not extend to Nordsieck formulas for which the

corresponding p and a polynomials have common factors.

THEOREM 4 .4 .  Assume that p (F~) and a ( ~ ) have a common factor

and that the formula (p , a) is of order at least q. Then a cannot be

expressed only in terms of 
~n j ’ hy ’

1
, j  = 0(l)n. 

_ _  _ _ _  _ _
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Proof. We beg in by showing that t here ex ists an eigenvecto r

v assoc iated with a nonze ro eigenvaiue o f S such tha t e~v = 0. From

(4. 3)  it follows that p (f ~) and a ( ~ ) have the common factor 1 if and only

if 2
~q = 0. First , suppose that  2.q 

= 0. Then ~ = 1 is a common root and

so the formula must be of formal order at least k+l . Hence bTi = 0

where

bT 
— 

T log(P)
— 

— !0 P—I ‘

and so

(bT+eT)S = bT
P = bT + log P = bT + 4

Also £ = 0 impl ies eTS eT . Therefore the null space of S—I is at leastq — q —q
• of dimension two , and so we can choose v ~ 0 such that Sv = v and

e~v 0. Second , suppose that 2.q ~ 0. Let

v(~ ) = det(~jI—S)•(~I—S) 
‘2.

which is a vector of polynomials in ~. Let be a common root of p(
~)

and a(~) . Then ~ (~~ ) ~ since ~ (~ ) = (~ _ l)~~2.q . Also

(~ 0I—S ) v(~ 0) = det (~ 0I—S)~ 2. = 0 , ‘I
and e~v(~~ ) = a(

~0) = 0. Therefore in either case there exists ~ 0

and v # 0 such that S = and e
0
v = 0. Moreover , e1v = 0 , because

4 is a lef t  eigenvector for the eigenvalue 0. This means that if

were changed to a0 + v , the values of y and hy ’ would r emain unchanged

for all a , and yet a~ would become a~ + f~ v. This proves the nonexistence

of an expression for a in terms of the values y and y ’ .Dn n a
Theorems 5.3 and 5.4 do not cover the case where the order is

less than q due to a common factor of ~—l , but extending the results to

such formulas does not seem worthwhile.

_ _ _ _~L 1  _ _  - - -- - -• —- - - -
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6. Equivalence of P r e d i c t o r — t or rector  Formulas. The use of a linear

Nordsieck formula requires the solution for 6 of the equation

hy ’ + ~ 6 = h f ( t , y + 2. 6 )n , O I n  n n ,0 O n

where 
~n ,O 

= e~ Pa
1 

and hy ’
0 

= 4Pa ,. In pract ice this must be

app roximately solved by some i te ra t ive  process:

5 : = O ,n,O

6 := 6 - [2 .  1-2. hJ ] 1[hy ’ +2. 6 -hf In ,p 1 0 n ,~ n ,0 1 n ,p n ,l1

= 0 , 1, . . . , M(n)—l

where f , 1, and J are defined as in §2 with y = y + 2. 6
n,j.1 n,I-!—l n ,u n,O 0 n ,jJ

After  determining 6 := 6 and adding the increment £6 a f inaln n,M(n) — n

function evaluation may or may not be performed . For a P(EC)* Nordsieck

formula

a := Pa + 2.6— n— i — n

and fo r a P(EC)*E Nordsieck formula

a := Pa +2.6 +eh(f —y ’)
-n -n—i - n  = 1 n n

where hy ’ : hy ’ + ~ 6n n ,0 1 n ,M(n)—1

Remark. The predictor—corrector Nordsieck fo rmulas of Gear

[197la] are introduced independently of l inear (“ corr ecto r only ”)

Nordsieck formulas.  For this reason these predictor—corrector  formulas

use 9, 1—2. hJ := 1.
1 0 n,p

For the P(EC)* formulas we have that hy ’ = eTpa + 2. 6n -~l -n— l i n
and so the recurr en ce can also be expr essed as

a = S a + 2 . hy ’=n -n—i - n

The refore  the equivalence results  app ly to P(EC) * fo rmulas as much as

they do to linear formulas.  The underl ying multistep predictor formula

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~— --~~~~~~~~~~~~~~~~~~~~~~
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ca n be obtained from = 

~~~~n—i by exp ressing a 1 as linear

combinat ions of the components of thus it has stepnumber of at most

k+O*.

The situation is quite different for P (EC)*E formulas.

To dete rmine the equivalent multistep formula , one begins with the

recurrence

a = Sa + (2.— e )hy ’ + e hf
-n -.~ —l - -i n —J n

Proceeding as in the proof of Theorem 5.2 , on e obtains a difference

equation involving y . ,  j 0(l)k, y ’ .,  j 0( l )k— l , and y’ .,

j = l(1)k , which is not a true F (EC) *E mult is tep formula .

For examp le , conside r the three—value Nordsieck formula.

By expressing y and 
~n— l as functions of 

~
‘n ’ ~

1n—l ’ ~n—l’  and 
~n—2

and then eliminating h 2y” 2 /2 , one obt a ins the dif f erence equation

+ 

~
22.2 2~~n-i 

+ ( i_ 2 2.2 )y~~ 2

= 2
0
hy’ + [( l—2,0)hy ’ 

~ 
+ ( 2.2— 2.0)hy ’ l~ 

+ (2.0+2.2 — l ) h y ’ 2 ‘

which is not a P(EC) *E formula unless = 

~~ 
For the third order

Ad ams—Moulton formula this is

5 — , 7 , 1 — , 1 ,- 3’n—l 
= 

~~ 
hy + ~~ ~~~~~ + -

~~~~~ 
hYn_i ] + -

~~~~~ 
hy 2 .

L ______ 
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7. Applications. An important practical  consequence of the equivalence

theory is that all multistep for mulas are minimum storage formulas.

This idea is certain ly imp licit in the investigations by Gupta and

Waiiace of new multistep formulas. It is also the rationale for the

computer research of Kong [1977] for k—step formulas of order k having the

smallest error coefficient for a given angle a of A(a)—stability. Previous

searches by Dill and Gear [1971] (the error coefficient for their formula

should be 14.0 rather than 0.0108) and by Jam and Srivastava [1970]

concentrated on formulas for which most of the trailing coefficients of

a(~ ) were set to zero. The computer results of Kong suggested formulas

which lead to a proof of the following result: for any a < iT/2 there

exists an A( a)—stab le k—step formula of order k. This is also proved

by Crigorieff and Schroll [19771.

The paper of Nordsieck mentions that “the potential advantage

of a more elaborate procedure in which the matrix hf is numerically

computed at every step and 2. is made a chosen function of hf~~ implying

a nonlinear process tailored to the subject differential equation system ,

is an interesting topic for future investigation,” where we have

substituted our notation for his. The idea is developed further in a

report of Gear [1966], which proposes a formula for scalar implicit

differential equations of any order. For the equation y’ — f(t, y) = 0

the formula becomes

2. : 2.
AM 9,BDhf

— — — y

and

2. 1-2. hJ := l+h 2f 2
1 O n ,p y

- -.--,-- ~~~~~~~
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where AN and BD refer to the (q+l)—st Adams—Mouiton and q—th order

backward differentiation formulas , respectively. (The subscripts

in the equation on page 21 of this report should read a.) This idea

is extended to systems of differential equations by Skeel and Kong [l9~7],

who suggest

2. := ~
AN

I~
BDhf

and

2, i—2 , hJ := (l—chf )21 O n ,p

where y and c are free parameters . In §4 it was shown that p(
~) and o(~)

are linear transformations of 9 , and so a linear combination of 2.

• — vectors corresponds to that same linear combination of the corresponding

linear multistep formulas. Thus, under the assumption of constant hf

the “blended” Nordsieck formula is equivalent to the same blend of linear

multistep formulas.

- - - ~~~~~~~~~~~—----- —-—--_--——--~-—— —------- - -  -
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